Determinants of the Performance of Arsenic Adsorbent Media

A comparison of field and laboratory studies

Malcolm Siegel, Alicia Aragon, Hongting Zhao, Malynda Aragon, Randy Everett Melody Nocon, Brian Dwyer

Sandia National Laboratories Albuquerque, NM

March 30, 2006

Arsenic Water Technology Partnership Background

- Congressional Appropriation \$13M FY03 FY06
- DOE- funded peer-reviewed, cost-shared research program to develop and demonstrate innovative technologies for removal and disposal of arsenic from drinking water
- Partner Roles
 - Bench-Scale Studies (AwwaRF)
 - Demonstration Studies (Sandia)
 - Economic Analysis/Outreach (WERC)
- Focus on small systems
 - 40% of resources directed to rural and Native American utility needs
 - Minimize costs capital, operating, maintenance
 - Minimize residual quantities & disposal costs

Other Sandia Pilot Test Team Members

William Holub Jr., Jerome Wright, Justin Marbury, Emily Wright, Michelle Shedd, Carolyn Kirby, Paul McConnell, Linnah Neidel, Nik Rael, Andres Sanchez, David Stromberg, Tom Hinkebein, Frederick Partey (NMT)

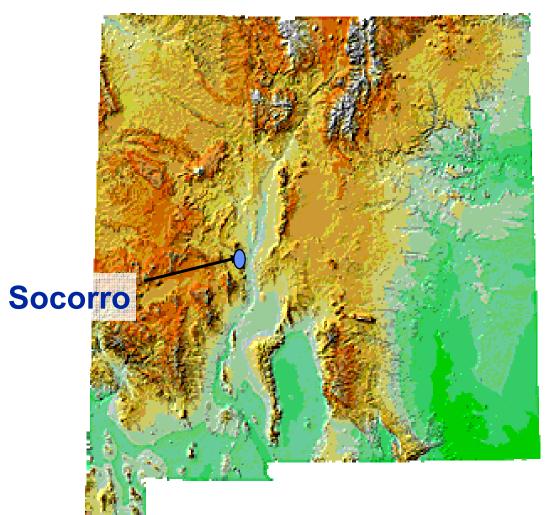
Overall Objective

Full scale treatment 12-24 months

Reduce time and costs required to determine the most effective adsorptive treatment technology for small systems for a variety of water qualities.

Pilot scale 6-12 months

RSSCT & isotherm Days-weeks



Focus of Talk

- Compare different methods to estimate arsenic loading capacity of 5 different adsorptive media in natural water
 - Pilot-scale test in community water systems
 - Rapid small scale tests (RSSCT) in lab
 - Batch (isotherm) tests in lab
- What is most cost-effective way to predict media performance in small systems?
- Current talk describes status of on-going efforts.
 - Focus on results from first pilot site Socorro, NM.
- Information available at <u>www.arsenicpartners.org</u>
 - Follow link to Pilot studies results

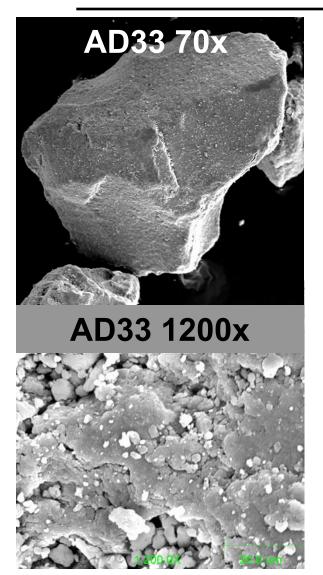
Pilot Test in Socorro, New Mexico

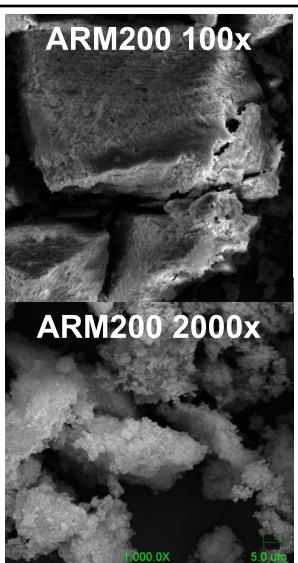
Pilot Test: Socorro, NM

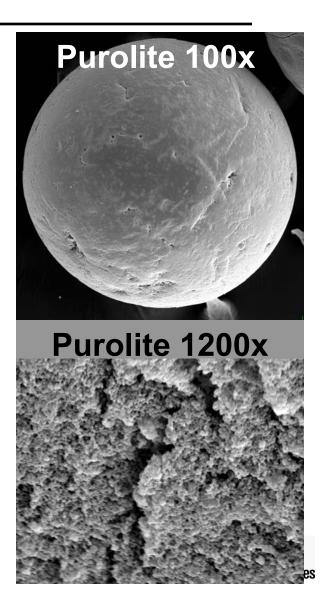
- 100% groundwater source for drinking water
- 2 warm springs (90°F) provide 500 gpm, 35 – 55 ppb As(V) by gravity flow.
- Formerly site of tap for bottled water company;
- Optimal F for oral health
- Phase 1: Feb-Oct 2005
 - Tested
 - Fe oxides: AD33, ARM200
 - Resin AsX^{np}
 - Ti-oxide Metsorb
 - Zr-oxide Isolux
 - EBCT study of AD33
 - 3,4,5 min

New Mexico Pilot Sites – Water Quality

Site	Total As/As(III)	V (ppb)	SO ₄ (ppm)	Fe (ppm)	рН
Socorro	45 ppb / 0 ppb	11	29	0.05	8.0
Anthony	20 ppb / 18 ppb	2	180	0.15	7.7
Rio Rancho	19 ppb / < 1 ppb	15	100	<0.10	7.7
Jemez Pueblo	20 ppb / 19 ppb	<1	24	1.2	7.5

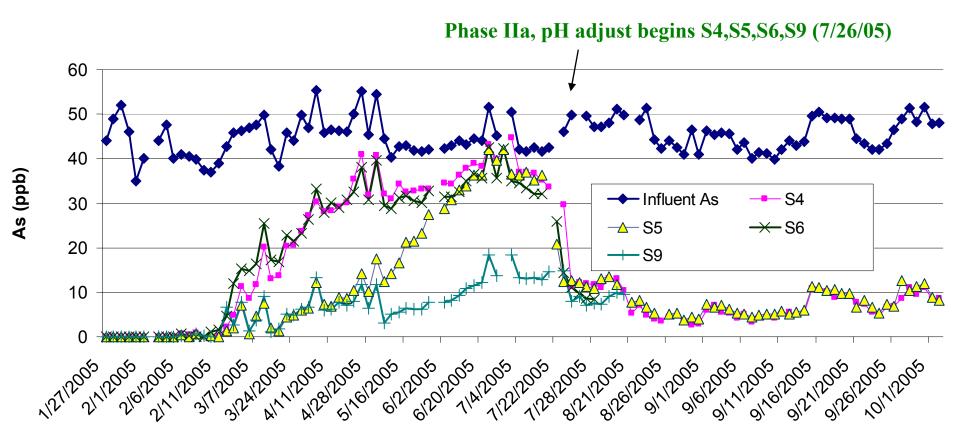

Site	Cond. (μS/cm)	TOC (ppm)	Ca Hard (ppm CaCO ₃)	Alkalinity (ppm CaCO ₃)	SiO ₂ (ppm)
Socorro	360	0.5	44	120	25
Anthony	1380	0.8	66	180	37
Rio Rancho	630	ND	62.5	184	22
Jemez Pueblo	770	2.0	155	290	50




Chemical Compositions of Media

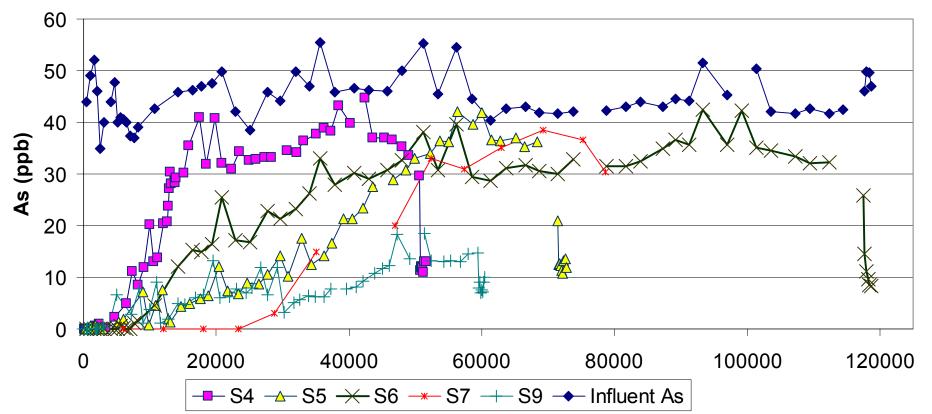
Media	Constituents (XRD)	Dominant Elements (EDS)
Isolux 302M	Amorphous zirconium oxide/hydroxide	Zr, O
Metsorb	Crystalline TiO ₂ (Anatase)	Ti, O
ARM200	Amorphous Iron oxide/hydroxide (or very poorly crystalline Hematite)	Fe, O
ArsenX ^{np}	Amorphous iron oxide/hydroxide Resin impregnatation	Fe, O, C
AD33	Iron oxide/hydroxide (Goethite)	Fe, O

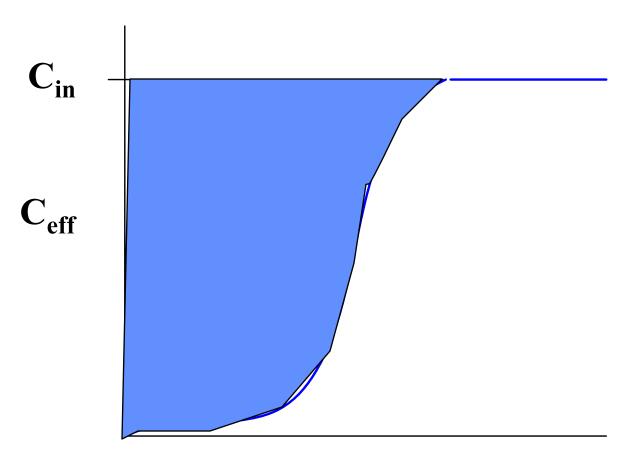
SEM Photos of Adsorption Media



Socorro Pilot Phase I and Ila Events

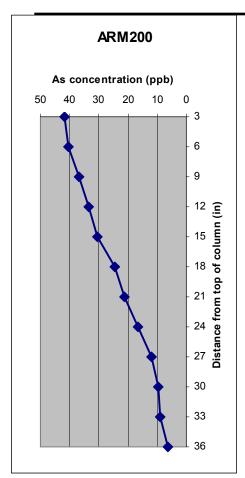
S4 = ARM200 (FeOx); S5 = AsXnp (resin); S6 = Metsorb (TiOx); S9 = AD33 (FeOx)

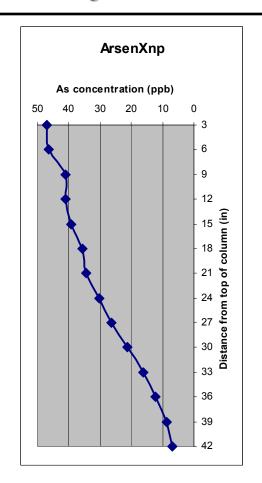

Not a linear scale!

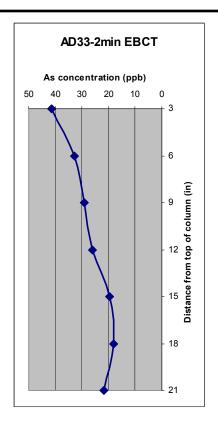

S4 = ARM200 (FeOx); S5 = AsXnp (resin); S6 = Metsorb (TiOx); S7 = Isolux (ZrOx); S9 = AD33 (FeOx); influent BV= S6 (proxy)

Socorro Arsenic Removal

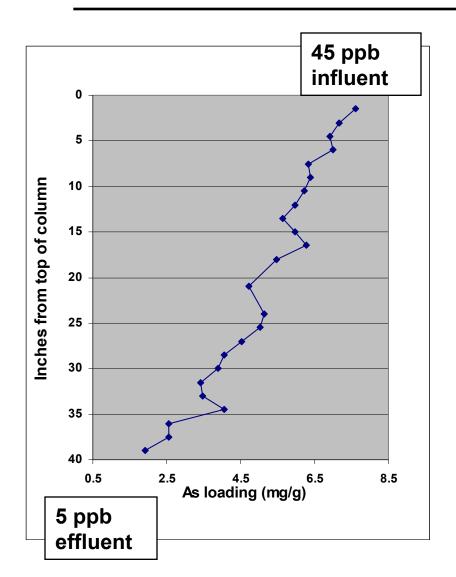
Calculation of Column Arsenic Loading Capacity


Media Performance in Socorro, NM


Parameter	ARM200 (FeOx)	Metsorb (TiOx)	*ArsenX ^{np} (Resin)	lsolux (ZrOx)	AD33 (FeOx)
BV to 10 ppb	8,600	13,000	27,000	32,000	43,000
Capacity at 10 ppb, mg/g	0.60	0.70	1.38	1.67	3.56
Capacity at 35K BV, mg/g	1.17	1.39	1.75	1.67	3.01
Depletion - C/Co at 35K BV	0.88	0.60	0.35	0.38	0.15
BV at C/Co = 0.8	33,000	87,000	53,000	63,000	>270,000
Capacity at C/Co = 0.8	1.15	2.26	2.10	2.23	> 4.5


^{*}ArsenX^{np} batch was defective

Pore Water Analyses show homogeneous flow



1 month pH adjusted influent

After 4 months pH - adjusted influent

Spent Core Analyses – AD33 (4 min EBCT)

Arsenic leached from 1 g samples taken every 1.5 inches.

Sorption equilibria:

 $K_d^{\text{top}} = 7604/0.045 = 152080 \text{ ml/g}$ $K_d^{\text{bot}} = 1917/0.005 = 383400 \text{ ml/g}$

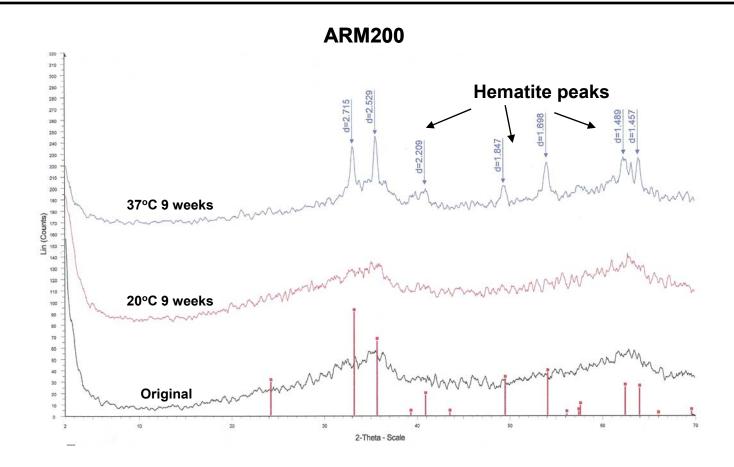
Total arsenic content

- Assume As loading constant for 1.5" thick disks.
- Sum media mass and As content to obtain average concentration and capacity of column.

As capacity = 5.08 mg As/g media.

As Capacity from mass balance on pilot effluent/influent > 4.48 mg/g As mg/g media

Agreement within 10%!!


Laboratory Studies

Objective: Compare predictions of media performance obtained from different kinds of tests to results of pilot test.

- Materials characterization
 - Pre-test and post studies, temperature-ageing studies
 - XRD, Surface area (BET), pore size distribution
 - Particle morphology and surface chemistry
 - Attrition loss
 - Post-mortem pore fluids and solids
- Batch sorption studies
 - Kinetic (15°C and 40°C)
 - Isotherms (linear, Freundlich, Langmuir)
- Rapid small scale column tests (RSSCTS)
 - Proportional Diffusivity (PD) and Constant Diffusivity (CD)

Ageing: Possible silica polymorphs: opal, quartz, beta quartz Recrystallization may impact performance.

Pore Characteristics

Media	BET Surface Area (m²/g)	Average Pore Diameter (Å)	Total Pore Volume (TPV) (cm³/g)
Isolux 302M	499	23	0.29
Metsorb	211	64	0.34
ARM200	262	99	0.65
ArsenX ^{np}	120	174	0.05
AD33	147	245	0.90

Media have different pore size distributions.

Batch Sorption Studies

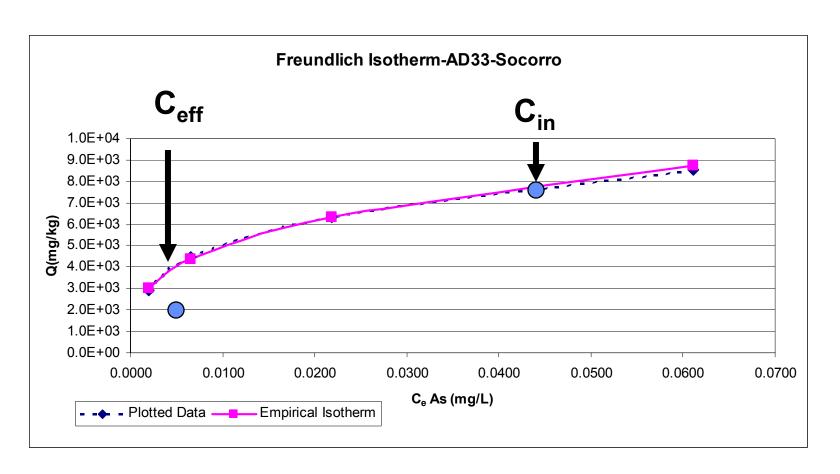
Solution:solid (ml/g) 750-800

• Equilibration time 24 hrs (per kinetic studies)

• Particle size 325 – 400 mesh

• pH (initial) 7.7 – 8.1

• pH(final) 7.5 – 7.7


Arsenic analysis ICP-MS

Isotherm fits Langmuir and Freundlich

• Final As 3 - 80 ppb

Isotherm Studies

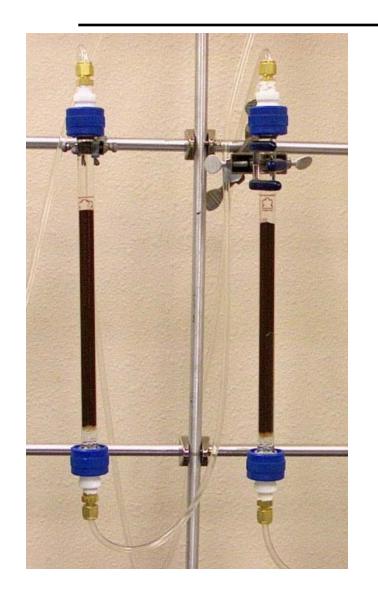
$$n_F$$
=0.3131, K_F =2.1E4

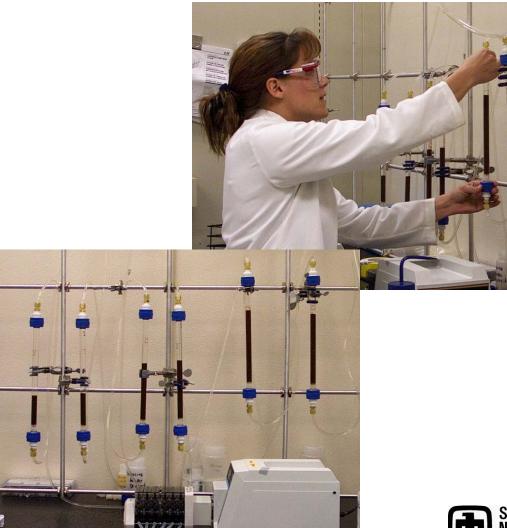
RSSCT Design and Practice

- Crush media to much smaller sizes
 - Smaller media, faster kinetics
- Reduce column diameter
 - Smaller column, higher HLR
- Apply a higher hydraulic loading rate
 - Faster HLR, smaller boundary layer, faster kinetics
 - Reduces external mass transfer resistance
- Shorter EBCT (Empty Bed Contact Time)
- Dimensional analysis and similitude
 - Attention to dimensionless parameters
- Two RSSCT designs:
 - Proportional Diffusivity: duration 2-5 weeks
 - Constant Diffusivity: duration 2-10 days

Theoretical Scaling Relationships

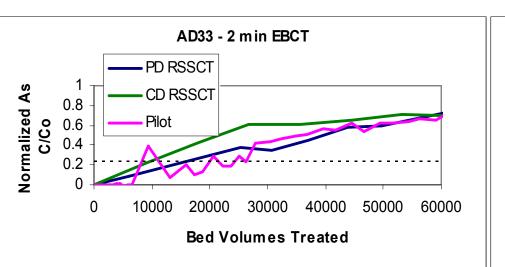
Diffusivity factor (x)
Relationship between Ds and particle size

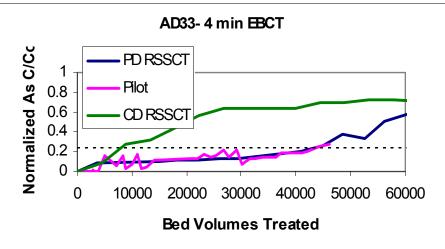

Non-constant Ds (x = ?)

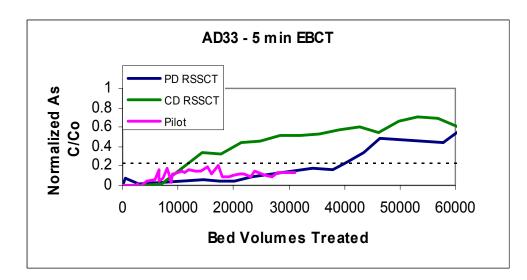

$$\frac{D_{s,RSSCT}}{D_{s,pilot}} = \left[\frac{R_{RSSCT}}{R_{pilot}}\right]^{x}$$
Proportional Ds (x = 1)

$$\frac{EBCT_{RSSCT}}{EBCT_{pilot}} = \left[\frac{R_{RSSCT}}{R_{pilot}}\right]^{2-x}$$
Constant Ds (x = 0)

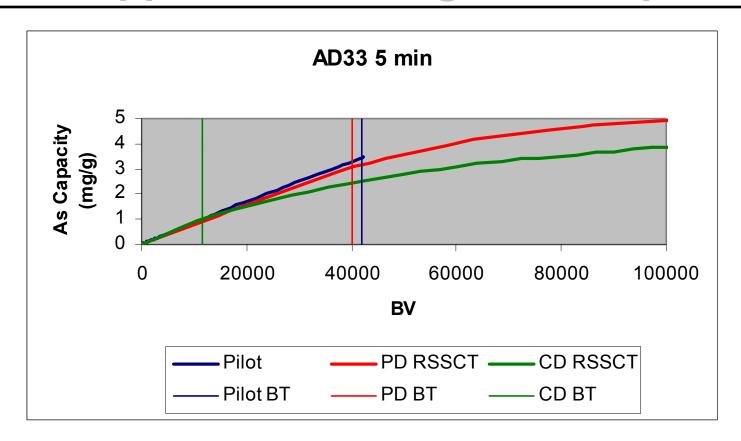
$$\frac{EBCT_{RSSCT}}{EBCT_{pilot}} = \left[\frac{R_{RSSCT}}{R_{pilot}}\right]^{2}$$


Socorro PD RSSCTs

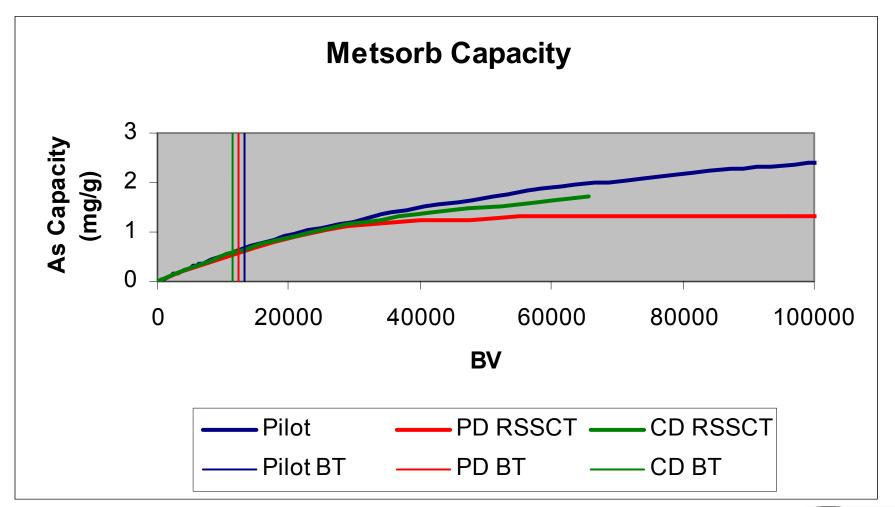




Comparison of Breakthrough for AD-33

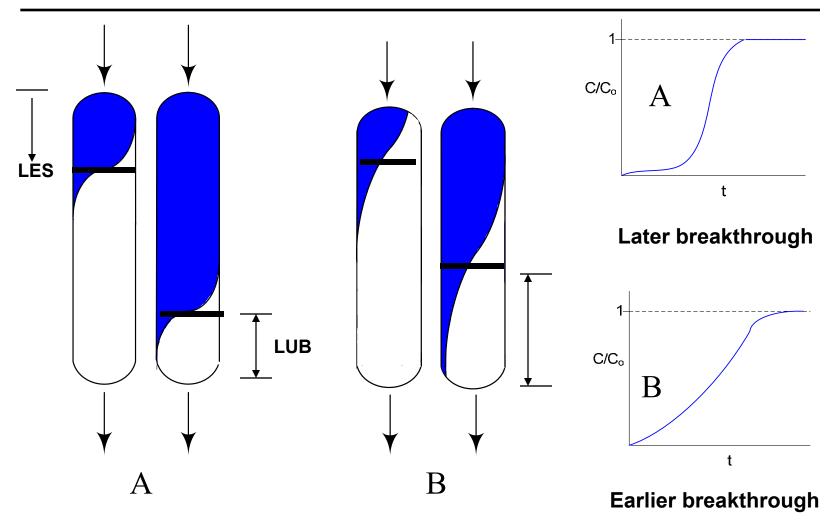


PD results closer to Pilot.


10 ppb Breakthrough and Capacity

Capacity is better estimator than BVs.

10 ppb Breakthrough and Capacity


Estimates of Arsenic Sorption Capacity from Different Tests

	AD33	ARM200	Metsorb
BV to 10ppb (pilot)	43,000	8,600	13,000
As at 10ppb (pilot)	3.56 mg/g	0.6 mg/g	0.7 mg/g
BV to 10ppb (RSSCT)	43,000 (PD)	6000 (CD)	12,800 (PD)
As at 10 ppb (RSSCT)	3.39 mg/g (PD)	0.42 mg/g (CD)	0.69 mg/g (PD)
As at 10 ppb (Freundlich)	5.0 mg/g	3.6 mg/g	1.2 mg/g

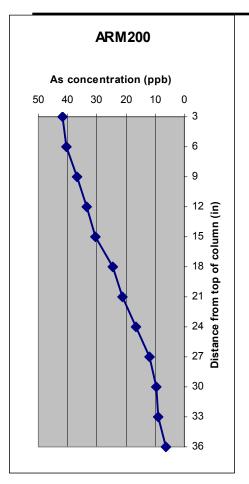
BV = bed volumes, PD = proportional diffusivity, CD = constant diffusivity

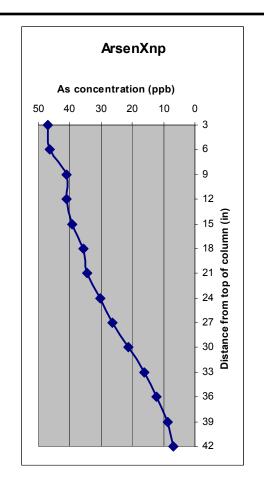
<u>As</u> = capacity calculated from loading or batch test

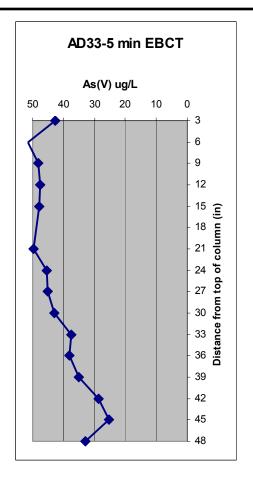
Shape of Mass Transfer Zone Determines Capacity

LES = Length of Equilibrium Bed

LUB = Length of Unused Bed


Bed Efficiencies of Sorbent Media Columns


Bed Efficiency = 10 ppb pilot capacity/45 ppb batch capacity x 100%


	AD33 (4 min)	ARM200	AsX ^{np}	Metsorb
<u>As</u> at 10ppb (pilot)	3.6 mg/g	0.6 mg/g	1.4 mg/g	0.7 mg/g
As at 10 ppb (Freundlich)	5.0 mg/g	3.6 mg/g	4.6 mg/g	1.3 mg/g
<u>As</u> at 45 ppb (Freundlich)	7.7 mg/g	8.0 mg/g	10 mg/g	4.5 mg/g
Bed Efficiency %	47	8	14	16

Pore Water Analyses Profiles are consistent with calculated bed efficiencies.

Efficiencies: 16%

Larger Length of Unused Bed (LUB)

Efficiency: 47%

Summary

Pilot Test Demonstration Objectives

 Generate cost/performance data for innovative technologies for small communities

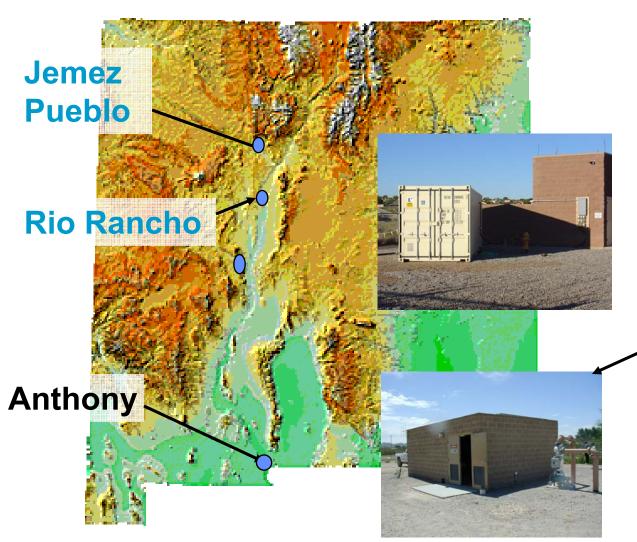
Objectives of this study

Determine efficient method to predict media performance

Pilot Study Results for Socorro, NM

- AD-33 GFO media and Isolux ZrO₂ media show best performance
- Capacities calculated from solution mass balance are lower than capacities from other methods

RSSCT and Batch Tests


- RSSCT provide inconsistent results need for additional replicate tests
- Batch Tests Freundlich isotherm fits data
- Good agreement between arsenic capacity of media calculated from analysis of spent media (AD33) and batch tests

Unanswered Questions

- Can a comprehensive lab-based study of media properties replace the need to carry out sitespecific field tests for predictions of media performance?
 - Relate pore structure to performance?
 - Effect of major ions on performance?
 - Effect of hydraulic properties on performance?
 - Backwashing may create fines and decrease BVs
- Comparison to full-scale treatment plant results?

Other Studies in New Mexico

Site of full-scale EPA study:

allows comparison of capacity at 4 scales

Thank you for staying

Questions?

•Happy Trails!

